Plane-Of-Array (POA) isotropic irradiance model
poa_irradiance(
x,
array.type = "fl",
suffix = TRUE,
AOI = "AOI",
GHI = "SWGDN",
DNI = "DNI",
DHI = "DHI",
ALBEDO = "ALBEDO",
array.tilt = "array.tilt",
zenith = "zenith",
tilt.param = tilt.param.default(),
keep.all = FALSE,
verbose = getOption("merra2.verbose"),
...
)
fPOA(
x,
array.type = "all",
suffix = TRUE,
UTC = "UTC",
yday = "yday",
hour = "hour",
lon = "lon",
lat = "lat",
GHI = "SWGDN",
integral_steps = 1,
tilt.param = tilt.param.default(),
keep.all = FALSE,
verbose = getOption("merra2.verbose")
)
data.table with `merra2ools` subset, required variables: `UTC` (or `yday` and `hour`), `locid` (or `lon` and `lat`), `GHI` (`SWGDN`),
Angle of Incidence, degrees
Global Horizontal Irradiance (\(W/m^2\))
Direct Normal Irradiance (\(W/m^2\))
Diffuse Horizontal Irradiance (\(W/m^2\))
the PV tilt angle, degrees
ground-reflected portion of the POA irradiance (\(W/m^2\))
\[I_{POA} = I_{POA,b} + I_{POA,d} + I_{POA,g}\] where:
\(I_{POA} \textrm{ - the plane-of-array irradiance } (W/m^2)\)
\(I_{POA,b} \textrm{ - the beam irradiance that hits the array } (W/m^2)\) \[I_{POA,b} = DNI\times\cos{(AOI)}\]
\(I_{POA,d} \textrm{ - the sky-diffuse portion of the POA irradiance } (W/m^2)\) \[I_{POA,d} = DHI\times\frac{1+\cos{(array.tilt)}}{2}\]
\(I_{POA,g} \textrm{ - the ground-reflected portion of the POA irradiance } (W/m^2)\) \[I_{POA,g} = GHI\times{albedo}\times\frac{1-\cos{(array.tilt)}}{2}\]
NA
#> [1] NA