Plane-Of-Array (POA) isotropic irradiance model

poa_irradiance(
  x,
  array.type = "fl",
  suffix = TRUE,
  AOI = "AOI",
  GHI = "SWGDN",
  DNI = "DNI",
  DHI = "DHI",
  ALBEDO = "ALBEDO",
  array.tilt = "array.tilt",
  zenith = "zenith",
  tilt.param = tilt.param.default(),
  keep.all = FALSE,
  verbose = getOption("merra2.verbose"),
  ...
)

fPOA(
  x,
  array.type = "all",
  suffix = TRUE,
  UTC = "UTC",
  yday = "yday",
  hour = "hour",
  lon = "lon",
  lat = "lat",
  GHI = "SWGDN",
  integral_steps = 1,
  tilt.param = tilt.param.default(),
  keep.all = FALSE,
  verbose = getOption("merra2.verbose")
)

Arguments

x

data.table with `merra2ools` subset, required variables: `UTC` (or `yday` and `hour`), `locid` (or `lon` and `lat`), `GHI` (`SWGDN`),

array.type
suffix
AOI

Angle of Incidence, degrees

GHI

Global Horizontal Irradiance (\(W/m^2\))

DNI

Direct Normal Irradiance (\(W/m^2\))

DHI

Diffuse Horizontal Irradiance (\(W/m^2\))

array.tilt

the PV tilt angle, degrees

keep.all
verbose
UTC
yday
hour
lon
lat
albedo

ground-reflected portion of the POA irradiance (\(W/m^2\))

Details

\[I_{POA} = I_{POA,b} + I_{POA,d} + I_{POA,g}\] where:

  • \(I_{POA} \textrm{ - the plane-of-array irradiance } (W/m^2)\)

  • \(I_{POA,b} \textrm{ - the beam irradiance that hits the array } (W/m^2)\) \[I_{POA,b} = DNI\times\cos{(AOI)}\]

  • \(I_{POA,d} \textrm{ - the sky-diffuse portion of the POA irradiance } (W/m^2)\) \[I_{POA,d} = DHI\times\frac{1+\cos{(array.tilt)}}{2}\]

  • \(I_{POA,g} \textrm{ - the ground-reflected portion of the POA irradiance } (W/m^2)\) \[I_{POA,g} = GHI\times{albedo}\times\frac{1-\cos{(array.tilt)}}{2}\]

Examples

NA
#> [1] NA