Irradiance decomposition
ghi_decomposition(
x,
yday = "yday",
GHI = "SWGDN",
zenith = "zenith",
beam = "beam",
method = 0,
zenith_max = 89,
keep.all = FALSE,
verbose = getOption("merra2.verbose")
)
day of a year, integer vector
Global Horizontal Irradiance from MERRA-2 subset (\(GHI, W/m^2\))
Zenith angle, degrees
List or data.frame with estimated following solar geometry variables:
Extraterrestrial irradiance (\(G_e\))
\[G_e = G_{sc}\times\big(1+0.033\cos{(\frac{360n}{365})}\big)\]
where:
\(G_{sc} = 1360.8W/m^2\), is the solar constant based on the latest
NASA observation (Kopp and Lean, 2011);
\(n - \) day of the year.
Clearness index (\(k_t\)) \[k_t = \frac{GHI}{G_e\cos{(zenith)}}\]
Diffuse fraction (\(k_d\)) \[k_d = \begin{cases} 1-0.09k_t & & {k_t < 0.22}\newline 0.9511-0.1604k_t+4.388k_t^2-16.638k_t^3+12.336k_t^4 & & {0.22 \leq k_t \leq 0.8}\newline 0.165& & {k_t > 0.8} \end{cases} \]
Direct Normal Irradiance (\(DNI, W/m^2\)) \[DNI = \frac{(1-k_d)}{\cos{(zenith)}}\times{GHI}\]
Diffuse Horizontal Irradiance (\(DHI, W/m^2\))
\[DHI = k_d\times{GHI}\]
where:
\(GHI\) - Global Horizontal Irradiance (\(GHI, W/m^2\)) from MERRA-2 dataset.
\[GHI = DHI + DNI \times{\cos{(zenith)}}\]
NA
#> [1] NA